Scalable One-pot Bacteria-templating Synthesis Route toward Hierarchical, Porous-Co3O4 Superstructures for Supercapacitor Electrodes
نویسندگان
چکیده
Template-driven strategy has been widely used to synthesize inorganic nano/micro materials. Here, we used a bottom-up controlled synthesis route to develop a powerful solution-based method of fabricating three-dimensional (3D), hierarchical, porous-Co3O4 superstructures that exhibit the morphology of flower-like microspheres (hereafter, RT-Co3O4). The gram-scale RT-Co3O4 was facilely prepared using one-pot synthesis with bacterial templating at room temperature. Large-surface-area RT-Co3O4 also has a noticeable pseudocapacitive performance because of its high mass loading per area (~10 mg cm(-2)), indicating a high capacitance of 214 F g(-1) (2.04 F cm(-2)) at 2 A g(-1) (19.02 mA cm(-2)), a Coulombic efficiency averaging over 95%, and an excellent cycling stability that shows a capacitance retention of about 95% after 4,000 cycles.
منابع مشابه
A new type of porous graphite foams and their integrated composites with oxide/polymer core/shell nanowires for supercapacitors: structural design, fabrication, and full supercapacitor demonstrations.
We attempt to meet the general design requirements for high-performance supercapacitor electrodes by combining the strategies of lightweight substrate, porous nanostructure design, and conductivity modification. We fabricate a new type of 3D porous and thin graphite foams (GF) and use as the light and conductive substrates for the growth of metal oxide core/shell nanowire arrays to form integra...
متن کاملCost Effective and Scalable Synthesis of MnO2 Doped Graphene in a Carbon Fiber/PVA: Superior Nanocomposite for High Performance Flexible Supercapacitors
In the current study, we report new flexible, free standing and high performance electrodes for electrochemical supercapacitors developed througha scalable but simple and efficient approach. Highly porous structures based on carbon fiber and poly (vinyl alcohol) (PVA) were used as a pattern. The electrochemical performances of Carbon fiber/GO-MnO2/CNT supercapacitors were characteriz...
متن کاملNanoparticle Decorated Ultrathin Porous Nanosheets as Hierarchical Co3O4 Nanostructures for Lithium Ion Battery Anode Materials
We report a facile synthesis of a novel cobalt oxide (Co3O4) hierarchical nanostructure, in which crystalline core-amorphous shell Co3O4 nanoparticles with a bimodal size distribution are uniformly dispersed on ultrathin Co3O4 nanosheets. When tested as anode materials for lithium ion batteries, the as-prepared Co3O4 hierarchical electrodes delivered high lithium storage properties comparing to...
متن کاملSynthesis of functional hybrid silica scaffolds with controllable hierarchical porosity by dynamic templating.
We report a facile one-pot synthesis of hierarchically porous scaffolds, with independent control over nanoparticle mesoporosity and scaffold macroporosity. Our technique combines the chemistry of mesoporous silica nanoparticles with the control afforded by dynamic templating of surfactant mesophases. These materials are readily functionalizable and allow controllable spatial variation in macro...
متن کاملFacile and green synthesis of mesoporous Co3O4 nanocubes and their applications for supercapacitors.
Nanostructured Co3O4 materials attracted significant attention due to their exceptional electrochemical (pseudo-capacitive) properties. However, rigorous preparation conditions are needed to control the size (especially nanosize), morphology and size distribution of the products obtained by conventional methods. Herein, we describe a novel one step shape-controlled synthesis of uniform Co3O4 na...
متن کامل